Measurements of the HO2 uptake coefficients onto single component organic aerosols.
نویسندگان
چکیده
Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant.
منابع مشابه
Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols
The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is gener...
متن کاملChemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring
We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HOx≡H+OH+peroxy radicals) and their reservoirs (HOy≡HOx+peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism...
متن کاملOH and HO2 chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake
Several zero-dimensional box-models with different levels of chemical complexity, based on the Master Chemical Mechanism (MCM), have been used to study the chemistry of OH and HO2 in a coastal environment in the Northern Hemisphere. The models were constrained to and compared with measurements made during the NAMBLEX campaign (Mace Head, Ireland) in summer 2002. The base models, which were cons...
متن کاملGlobal and regional decreases in tropospheric oxidants from photochemical effects of aerosols
[1] We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO2, NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOSCHEM) with aerosol fields from a global 3-D aerosol model (GOC...
متن کاملHeterogeneous Chemistry and Tropospheric Ozone
Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + H + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets may affect O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 49 8 شماره
صفحات -
تاریخ انتشار 2015